Metagenomic Geolocation Prediction Using an Adaptive Ensemble Classifier
نویسندگان
چکیده
منابع مشابه
An adaptive ensemble classifier for mining concept drifting data streams
Traditional data mining techniques cannot be directly applied to the real-time data streaming environment. Existing mining classifiers therefore need to be updated frequently to adopt the changes in data streams. In this paper, we address this issue and propose an adaptive ensemble approach for classification and novel class detection in concept-drifting data streams. The proposed approach uses...
متن کاملBreast Cancer Survivability Prediction via Classifier Ensemble
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the featu...
متن کاملneural classifier ensemble using error-correcting output codes: access control application
abstract biometric access control is an automatic system that intelligently provides the access of special actions to predefined individuals. it may use one or more unique features of humans, like fingerprint, iris, gesture, 2d and 3d face images. 2d face image is one of the important features with useful and reliable information for recognition of individuals and systems based on this ...
Character Recognition using Ensemble classifier
To improve the accuracy of data classification systems, several techniques using classifier fusion have been suggested. This paper proposed a model of classifier fusion for character recognition problem. The work presented here aims to tackle the disadvantages and benefit of different classifiers with varying feature sets. In particular, this approach proposes the use of statistical procedures ...
متن کاملImproved prediction of protein-protein interactions using novel negative samples, features, and an ensemble classifier
Computational methods are employed in bioinformatics to predict protein-protein interactions (PPIs). PPIs and protein-protein non-interactions (PPNIs) display different levels of development, and the number of PPIs is considerably greater than that of PPNIs. This significant difference in the number of PPIs and PPNIs increases the cost of constructing a balanced dataset. PPIs can be classified ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Genetics
سال: 2021
ISSN: 1664-8021
DOI: 10.3389/fgene.2021.642282